Here are John's top 10 activities to rekindle the mathematical spark in home schooling parents, and to inspire some awe and enthusiasm in their children.
Maths is a subject that many parents have mixed feelings about. They know it’s important, but they sometimes feel like they’re not very good at it. Even if they use mathematics in their job, they might have lost sight of the awe and wonder that has captivated (some) humans since antiquity. Maths is worth learning about not merely because it can help with all sorts of daily activities, and not merely because it opens up career pathways that can be lucrative and fascinating, but also because the subject is inherently absorbing and rewarding. This last aspect is what mathematicians often refer to as the “beauty” in mathematics, and it’s the holy grail that every maths educator wants to help their students discover.
Maths is everywhere, and it’s not hard to find opportunities to estimate and measure physical quantities such as time, length and weight, and to investigate ways of working out areas, volumes and costs. Grasping these basic concepts in practical situations is the foundation for more imaginative and abstract questions.
Any origami project is a chance to think about angles in two dimensions and in three dimensions. Modular origami projects, which build up regular solid shapes out of 20 or 30 smaller units, are an eye-catching and meditative way of investigating geometry on a rainy Tuesday. Placing a shape on or next to a mirror can be useful for thinking about planes of symmetry; drawing nets and counting nodes, edges and faces can also lead to investigations in topology. Here are some ideas: https://www.pinterest.co.uk/explore/modular-origami/
How many categories of mathematical mystery are there? Here are some questions to start a conversation about the relationship between epistemology and mathematics, which is a fascinating way to approach GCSE topics including number, probability and set theory:
https://plus.maths.org/content/category/tags/mathematical-mysteries
The rule for generating the nth square number is easy. You just square n. But what is the rule for generating the nth triangular number? Or the nth pentagonal number? Or the nth dodecahedral number? Finding rules to generate sequences is useful:
What are all the mathematical symbols that you can think of?
What other symbols are there in GCSE maths? Does every operator have an “opposite” (i.e. an inverse)?
Algebra can be used in modelling real-life situations. For example, if a bath tub requires 200 litres to be full enough for bathing, and a tap can provide 0.5 litres per second, how many minutes will it take to fill the bath? (You can try to derive the equation time t = 200 / (0.5 x 60)). How long would it take if the plug was not put in, and water was simultaneously escaping at a rate of 0.4 litres per second? What about if the rate of water escaping depended on the height of the water in the bath? This would require you to express the 200 litres as a volume in the form 200 = height x area, e.g. 20 x 10.
This classic mind-expanding video is a way into magnitude and standard form. We need that way of representing numbers if we want to do cosmology or quantum physics. Looking at the whole scale of reality, and considering our place in it, hints at the unsettling paradigm shift brought about by the heliocentric model of Copernicus, and indicates the rate of change in humanity’s understanding of itself since then. Watch this: https://www.youtube.com/watch?v=0fKBhvDjuy0
Think of a number between 1 and 100. Type it into Google along with a % symbol. Open the highest news article in the search results.
A graph plotter such as www.graphsketch.com can be useful for quickly seeing the connection between equations and graphs. Spend some time adjusting the X and Y ranges, and also making sure that you have the syntax down for the equations, e.g. y = x2 + sin x should be entered as y = x^2+sin(x).
This is a fun way to practise using bearings and scale diagrams, and it can be done on the micro-scale by mapping the locations of half a dozen rice grains a room in your house or on a larger scale, e.g. Geocaching, or completing a journey using an Ordnance Survey map. Check out: https://www.geocaching.com/play
We store some data to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with this. You can learn more here
Start the discussion!